

I Congresso Brasileiro de Fluidodinâmica Computacional

Introdução à CFD usando o OpenFOAM

Prof. Livia Jatobá

Universidade do Estado do Rio de Janeiro Instituto Politécnico

O que é CFD?

Computational Fluid Dynamics
ou
Dinâmica dos Fluidos Computacional

É a solução numérica das equações que governam o escoamento de fluidos.

Por que CFD?

- * Necessidade de predição.
- Custo (ou impossibilidade) de experimentos.
- * Obter melhor entendimento do problema estudado.
- * Avanço dos recursos computacionais.
- * Ferramentas de simulação acessíveis e adotas em projetos de engenharia.

Por que OpenFOAM?

Open source Field Operation And Manipulation

:-)

- * Open-Source (GLP)
- * Redução de custos (eliminação do custo de licenças).
- * Desenvolvimento colaborativo.
- Desenvolvimento de novos métodos é acelerado pois parte de um código já existente.

:-(

- * Grande esforço para aprender como usar e estender a plataforma.
- * Multidisciplinar:
 - * Conhecimento geral da física do escoamento de fluidos.
 - * CFD / Métodos Numéricos.
 - * Desenvolvimento de software e programação em C++.
 - Computação paralela.

Particularidades de uma simulação CFD

- * A validade dos resultados simulados é determinada frente à resultados experimentais.
- * O fenômeno termo-físico simulado precisa de uma modelagem matemática apropriada.
- * O engenheiro precisa fazer as escolhas apropriadas.
- * A qualidade dos resultados depende:
 - * Modelos que representem o problema físico com acurácia.
 - * Métodos numéricos e algoritmos que resolvam as equações com baixo erro.

Considerações gerais:

- * O que espera-se da simulação CFD?
- * Qual a metodologia adotada para validar os resultados?
- « Qual o grau de acurácia dos resultados?
- * Quanto tempo existe disponível para o projeto?

Termo-física:

- * O escoamento é laminar, turbulento ou transicional?
- * O escoamento é compreensível ou incompressível?
- O escoamento envolve mais de uma fase ou mais de uma espécie química?
- * A troca térmica é importante para o problema?
- * As propriedades dos materiais são funções de variáveis dependentes?
- * Existe informação suficiente em relação às condições de contorno?
- * As condições de contorno são modeladas ou aproximadas de forma apropriada?

Domínio computacional (geometria e malha):

- * Pode-se construir uma representação discreta do domínio de escoamento de forma acurada?
- * Qual complexidade do domínio pode ser reduzida sem impactar na acurácia da solução?
- * O domínio computacional irá deformar ou mover durante a simulação?

Recursos computacionais:

- * Uma simulação será suficiente ou serão necessárias múltiplas simulações CFD para realizar a análise?
- * Quanto tempo existe disponível para cada simulação?
- * Qual tipo de recurso computacional está disponível?

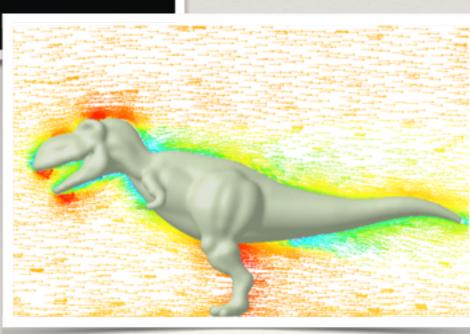
- 1^{a.} Etapa: pré-processamento
- 2^{a.} Etapa: solução

```
Courant Number mean: 0.116925 max: 0.852134 velocity magnitude: 0.852134

DILUPBICG: Solving for Ux, Initial residual = 1.89493e-07, Final residual = 1.89493e-07, No Iterations 0

DILUPBICG: Solving for Uy, Initial residual = 4.14522e-07, Final residual = 4.14522e-07, No Iterations 0

DICPCG: Solving for p, Initial residual = 1.06665e-06, Final residual = 3.39604e-07, No Iterations 1


time step continuity errors: sum local = 5.25344e-09, global = 5.55948e-19, cumulative = 3.27584e-18

DICPCG: Solving for p, Initial residual = 5.36118e-07, Final residual = 5.36118e-07, No Iterations 0

time step continuity errors: sum local = 6.86432e-09, global = -9.66312e-19, cumulative = 2.30953e-18

ExecutionTime = 0.25 s ClockTime = 0 s
```

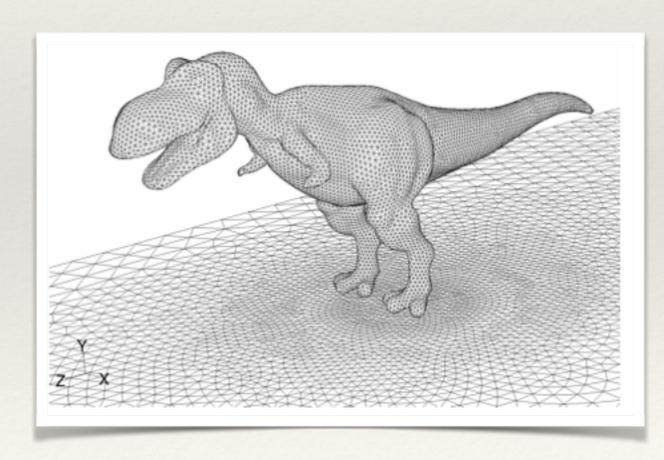
3^{a.} Etapa: pós-processamento

1^{a.} Etapa: pré-processamento

- * Modelo matemático do problema físico:
 - * Equações de conservação.
 - * Equações constitutivas e propriedades do fluido.
 - * Hipóteses simplificadoras.
 - * Condição de inicial e de contorno.
- * Modelo geométrico.
- Discretização do modelo geométrico (malha).
- Discretização das equações diferenciais (método numérico).
- * Sequência de solução das equações discretizadas (algoritmo).
- * Critérios de convergência.

1^{a.} Etapa: pré-processamento

- * Modelo matemático do problema físico:
 - * Equações de conservação.
 - * Equações constitutivas e propriedades do fluido.
 - * Hipóteses simplificadoras.
 - * Condição de inicial e de contorno.
- * Modelo geométrico.
- Discretização do modelo geométrico (malha).
- Discretização das equações diferenciais (método numérico).
- Sequência de solução das equações discretizadas (algoritmo).
- * Critérios de convergência.


$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$

$$\frac{\partial (\rho \mathbf{U})}{\partial t} + \nabla \cdot (\rho \mathbf{U} \mathbf{U}) = -\nabla p + \nabla \cdot \boldsymbol{\tau'} + \rho \mathbf{f}_{m}$$

$$\frac{\partial (\rho e_{tot})}{\partial t} + \nabla \cdot (\rho e_{tot} \mathbf{U}) = \nabla \cdot (\boldsymbol{\tau} \cdot \mathbf{U}) - \nabla \cdot \mathbf{q} + \dot{q}_{v}$$

1^{a.} Etapa: pré-processamento

- * Modelo matemático do problema físico:
 - * Equações de conservação.
 - * Equações constitutivas e propriedades do fluido.
 - * Hipóteses simplificadoras.
 - * Condição de inicial e de contorno.
- * Modelo geométrico.
- Discretização do modelo geométrico (malha).
- Discretização das equações diferenciais (método numérico).
- * Sequência de solução das equações discretizadas (algoritmo).
- * Critérios de convergência.

2^{a.} Etapa: solução

* Solução do sistema algébrico formado.

```
Time = 0.5

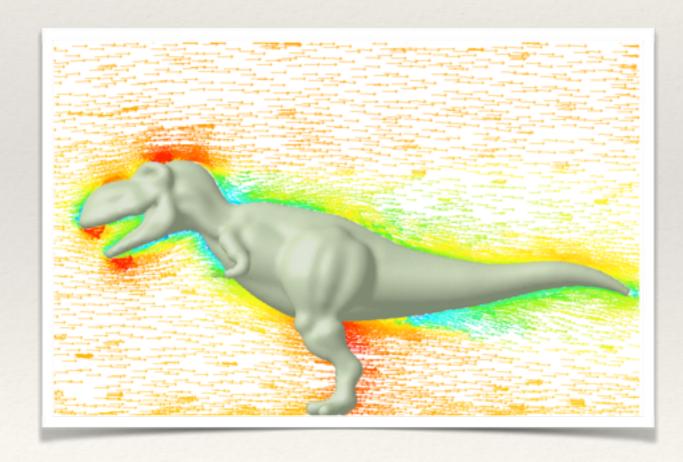
Courant Number mean: 0.116925 max: 0.852134 velocity magnitude: 0.852134

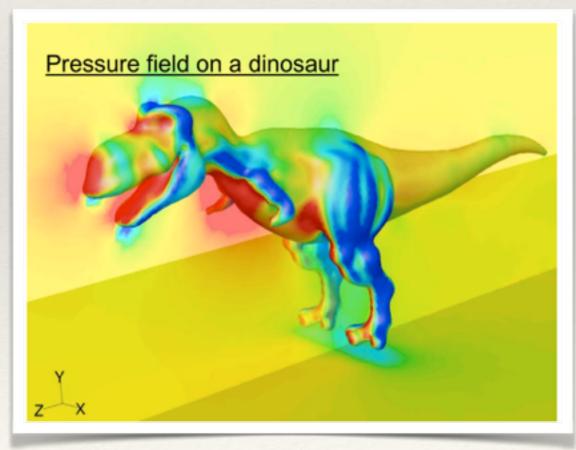
DILUPBICG: Solving for Ux, Initial residual = 1.89493e-07, Final residual = 1.89493e-07, No Iterations 0

DILUPBICG: Solving for Uy, Initial residual = 4.14522e-07, Final residual = 4.14522e-07, No Iterations 0

DICPCG: Solving for p, Initial residual = 1.06665e-06, Final residual = 3.39604e-07, No Iterations 1

time step continuity errors: sum local = 5.25344e-09, global = 5.55948e-19, cumulative = 3.27584e-18


DICPCG: Solving for p, Initial residual = 5.36118e-07, Final residual = 5.36118e-07, No Iterations 0


time step continuity errors: sum local = 6.86432e-09, global = -9.66312e-19, cumulative = 2.30953e-18

ExecutionTime = 0.25 s ClockTime = 0 s
```

3^{a.} Etapa: pós-processamento

- * Análise dos resultados.
- * Revisão do modelo matemático e hipóteses simplificadoras.

Equações Básicas

Modelo matemático do problema físico:

- Podemos identificar termos semelhantes nas diferentes equações de conservação:
 - * Acúmulo
 - Transporte Advectivo
 - Transporte Difusivo
 - * Termos volumétricos.

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$

$$\frac{\partial (\rho \mathbf{U})}{\partial t} + \nabla \cdot (\rho \mathbf{U} \mathbf{U}) = -\nabla p + \nabla \cdot \boldsymbol{\tau'} + \rho \mathbf{f}_{m}$$

$$\frac{\partial (\rho e_{tot})}{\partial t} + \nabla \cdot (\rho e_{tot} \mathbf{U}) = \nabla \cdot (\boldsymbol{\tau} \cdot \mathbf{U}) - \nabla \cdot \mathbf{q} + \dot{q}_{v}$$

$\frac{\partial \phi}{\partial t} + \nabla \cdot (\mathbf{U}\phi) = \nabla \cdot \mathbf{t}_{\phi} + S_{\phi}$

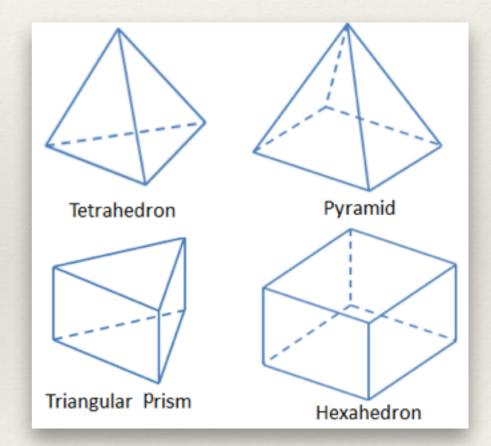
Forma Geral da Equação de Conservação

Advectivo Difusivo Fonte

 φ é uma propriedade volumétrica qualquer, \mathbf{t}_{φ} depende do modelo de transporte molecular e S_{φ} é o termo volumétrico.

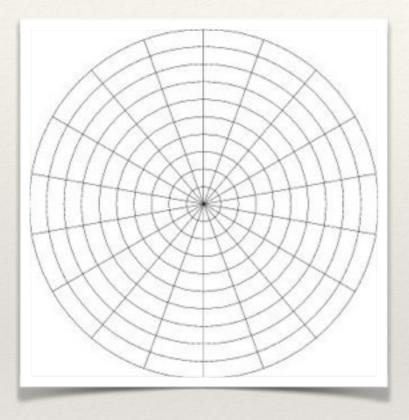
Solução Numérica

- * Consiste na substituição das <u>equações diferenciais</u> por um sistema de <u>equações algébricas</u>.
- * A construção dessa solução é feita em duas etapas:
 - * Discretização do domínio (malha).
 - * Discretização das equações (Método dos Volumes Finitos).

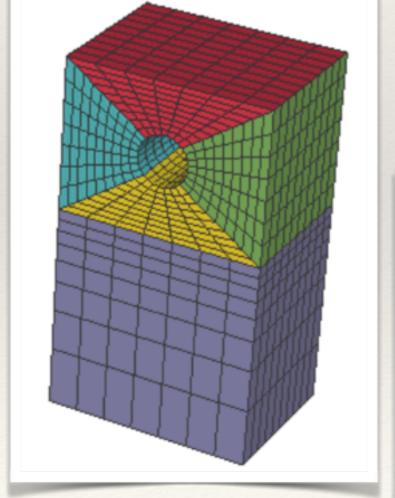

$$\underbrace{\frac{\partial \phi}{\partial t}}_{\text{Acúmulo}} + \underbrace{\nabla \cdot (\mathbf{U}\phi)}_{\text{Advectivo}} = \underbrace{\nabla \cdot \mathbf{t}_{\phi}}_{\text{Difusivo}} + \underbrace{S_{\phi}}_{\text{Fonte}}$$

$$\underline{\mathbf{A} \cdot \mathbf{x}} = \mathbf{b}$$

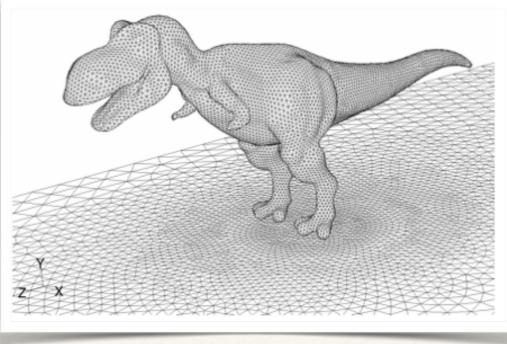
Malha


É a discretização do modelo geométrico.

- * <u>Geometria</u> é a representação 3D da região de escoamento.
- * Malha é a divisão da geometria em vários volumes.
- Quanto <u>maior o número de volumes</u>, <u>menor será o</u> <u>erro.</u>
- A forma do volume afeta o erro da solução numérica.
- De modo geral, a malha precisa ser <u>refinada</u> nas regiões do escoamento onde o <u>gradiente</u> da propriedade é <u>alto</u>.
- * A construção da malha é uma etapa crítica para garantir a convergência da simulação.



Tipos de malha

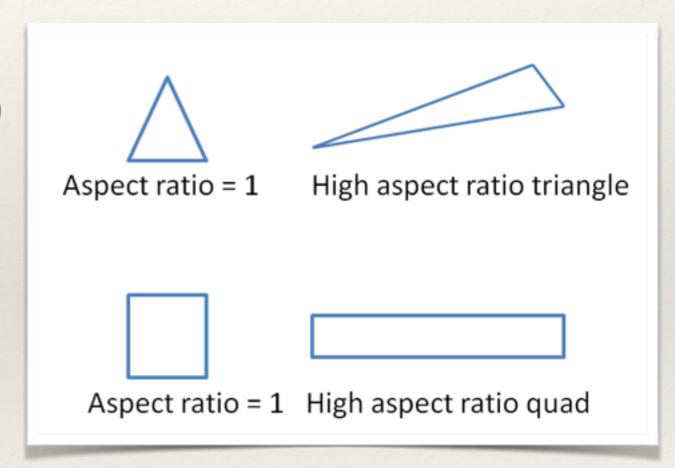

Estruturada

Estruturada por blocos

Não estruturada

Fronteiras da malha

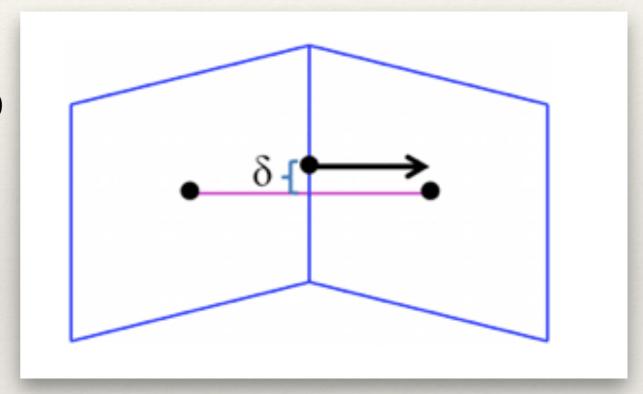
- * As fronteiras (ou contorno) da malha precisam receber propriedades topológicas.
- No OpenFoam, essas propriedades são atribuídas através de um tipo de patch.
 - * Os principais tipos são:
 - * **patch:** descrição mais geral, podendo receber qualquer tipo de condição de contorno.
 - * wall: permite o uso funções de parede em modelos de turbulência.
 - * symmetryPlane: plano de simetria.
 - * empty: usados em casos 2D ou 1D.


Estão associados ao formato geométrico do volume e a conectividade com seus vizinhos:

- * Razão de aspecto (aspect ratio)
- * Assimetria (distorção ou skewness)
- Ortogonalidade (orthogonality)

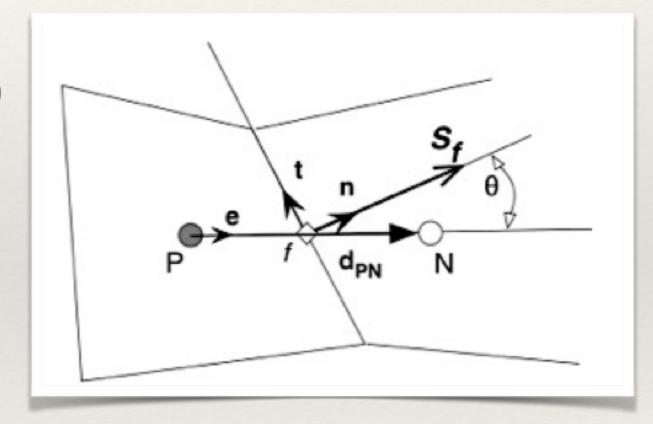
O checkMesh é um utilitário do OpenFOAM que fornece as métricas da malha.

Estão associados ao formato geométrico do volume e a conectividade com seus vizinhos:


- * Razão de aspecto (aspect ratio)
- * Assimetria (distorção ou skewness)
- * Ortogonalidade (orthogonality)

É a razão entre a maior e a menor aresta do elemento.

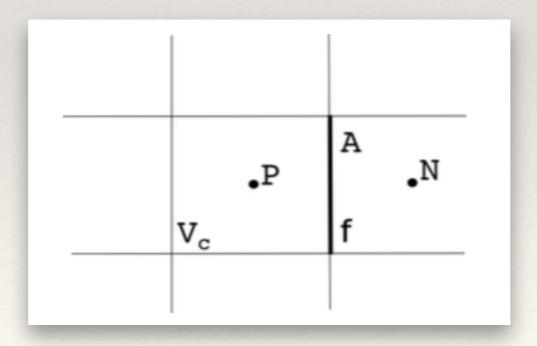
Estão associados ao formato geométrico do volume e a conectividade com seus vizinhos:


- * Razão de aspecto (aspect ratio)
- * Assimetria (distorção ou skewness)
- * Ortogonalidade (orthogonality)

É a distância (δ) entre o vetor que conecta o centro dos volumes vizinhos e o centro da face.

Estão associados ao formato geométrico do volume e a conectividade com seus vizinhos:

- * Razão de aspecto (aspect ratio)
- * Assimetria (distorção ou skewness)
- Ortogonalidade (orthogonality)



É o ângulo entre o vetor que conecta o centro dos volumes adjacentes e o vetor normal à superfície entre eles.

Discretização das equações diferenciais.

Consiste na integração da equação de conservação em cada um dos volumes de controle da malha.

$$\int_{t}^{t+\Delta t} \int_{V_{c}} \left(\frac{\partial \phi}{\partial t} + \nabla \cdot (\mathbf{U}\phi) \right) dV dt = \int_{t}^{t+\Delta t} \int_{V_{c}} \left(\nabla \cdot \mathbf{t}_{\phi} + S_{\phi} \right) dV dt$$

Integração do termo de acúmulo:

$$\int_{t}^{t+\Delta t} \int_{V_{c}} \frac{\partial \phi}{\partial t} \, dV \, dt \approx \int_{t}^{t+\Delta t} \int_{V_{c}} \left(\frac{\phi^{n} - \phi^{o}}{\Delta t}\right) \, dV \, dt$$

$$\approx \int_{t}^{t+\Delta t} \left(\frac{\phi^{n} - \phi^{o}}{\Delta t}\right) V_{c} \, dt$$

Integração do termo advectivo:

$$\int_{t}^{t+\Delta t} \int_{V_{c}} \nabla \cdot (\mathbf{U}\phi) \, dV \, dt = \int_{t}^{t+\Delta t} \sum_{f} \int_{A_{f}} (\mathbf{U}\phi) \cdot \mathbf{n} \, dA \, dt$$

$$\approx \int_{t}^{t+\Delta t} \sum_{f} \underbrace{\phi_{f}(\mathbf{U} \cdot \mathbf{n})_{f}}_{\text{fluxo advectivo}} A_{f} \, dt$$

n é o vetor unitário normal externo a face.

Integração do termo difusivo:

$$\int_{t}^{t+\Delta t} \int_{V_{c}} \nabla \cdot \mathbf{t}_{\phi} \, dV \, dt = \int_{t}^{t+\Delta t} \sum_{f} \int_{A_{f}} \mathbf{t}_{\phi} \cdot \mathbf{n} \, dA \, dt$$

$$\approx \int_{t}^{t+\Delta t} \sum_{f} \underbrace{(\mathbf{t}_{\phi} \cdot \mathbf{n})_{f}}_{\text{fluxo difusivo}} A_{f} \, dt$$

Integração do termo fonte:

$$\int_{t}^{t+\Delta t} \int_{V_{c}} S_{\phi} \, dV \, dt \approx \int_{t}^{t+\Delta t} (S_{\phi})_{P} V_{c} \, dt$$

Discretização temporal explicita:

$$\int_{t}^{t+\Delta t} \left[\left(\frac{\phi^{n} - \phi^{o}}{\Delta t} \right) V_{c} + \sum_{f} \phi_{f}^{o} \left(\mathbf{U}^{o} \cdot \mathbf{n} \right)_{f} A_{f} - \sum_{f} \left(\mathbf{t}_{\phi}^{o} \cdot \mathbf{n} \right)_{f} A_{f} - \left(S_{\phi}^{o} \right)_{P} V_{c} \right] dt = 0$$

Discretização temporal implicita:

$$\mathbf{t}_{\phi} = \Gamma \nabla \phi$$

$$\int_{t}^{t+\Delta t} \left[\left(\frac{\phi^{n} - \phi^{o}}{\Delta t} \right) V_{c} + \sum_{f} \phi_{f}^{n} \left(\mathbf{U}^{o} \cdot \mathbf{n} \right)_{f} A_{f} - \sum_{f} \left(\Gamma \nabla \phi^{n} \cdot \mathbf{n} \right)_{f} A_{f} - \left(S_{\phi}^{o} \right)_{P} V_{c} \right] dt = 0$$

A escolha dos esquemas de interpolação:

- * Interpolação de ϕ_f
- Aproximação do fluxo advectivo na face
- * Aproximação do fluxo difusivo na face

$$\left(\frac{\phi^n - \phi^o}{\Delta t}\right) V_c + \sum_f \phi_f^n \left(\mathbf{U}^o \cdot \mathbf{n}\right)_f A_f - \sum_f \left(\Gamma \nabla \phi^n \cdot \mathbf{n}\right)_f A_f = \left(S_\phi^o\right)_P V_c$$

O <u>fvSchemes</u> é o arquivo onde essas escolhas são feitas.

Principais escolhas para o termo advectivo:

- Diferenças Centrais (CDS): Gauss linear
- Upwind (UDS): Gauss upwind
- * TVD (Total Variation Diminishing):
 - Gauss vanLeer
 - Gauss SuperBee
 - Gauss vanAlbada

A escolha da função de interpolação do termo advertido é feita no subdicionário divSchemes no arquivo <u>fvSchemes</u>.

Condições de Contorno

- * Dirichlet: valor de φ é constante.
- * Newmann: valor do gradiente normal de φ na face é constante.
- * Mista.

A escolha da condição de contorno depende do problema. Veremos mais detalhes nos tutoriais.

Solução do Sistema Algébrico

- Método Direto: Eliminação Gaussiana.
- Método Iterativo:
 - * Especificação de um critério de convergência (tolerance).
 - * Pode-se adotar um fator de relaxação (relaxationFactors) para acelerar a convergência.
 - Exemplos:
 - * Gradiente Conjugado Pré-condicionado (PCG)
 - * Gradiente Biconjugado Pré-condicionado (PBiCG)
 - * Generalized Geometric Algebraic Multigrid (GAMG)

O <u>fvSolutions</u> é o arquivo onde essas escolhas são feitas.

Tipos de convergência:

- * Convergência de malha.
- Convergência da solução numérica.

O **foamLog** é um utilitário que permite extrair dados para análise de convergência.

Tipos de convergência:

- * Convergência de malha.
- Convergência da solução numérica.

A convergência de malha é garantida quando a solução não muda a medida que a malha é refinada.

Tipos de convergência:

- * Convergência de malha.
- Convergência da solução numérica.

Monitore os seguintes parâmetros:

- resíduos da solução do sistema algébrico;
- uma variável de interesse em uma dada região do domínio;
- propriedades integradas (força, fluxos, temperatura média);
- a conservação das propriedades.

Tipos de convergência:

- * Convergência de malha.
- Convergência da solução numérica.

Sobre simulações que atingem o estado estacionário:

- O estado estacionário será atingido quando o valor da variável de interesse não muda mais ao longo das novas iterações.
- * Se a simulação atinge o estado estacionário, o resíduo inicial do sistema algébrico diminui ao longo das iterações.

Convergência, erros e incertezas

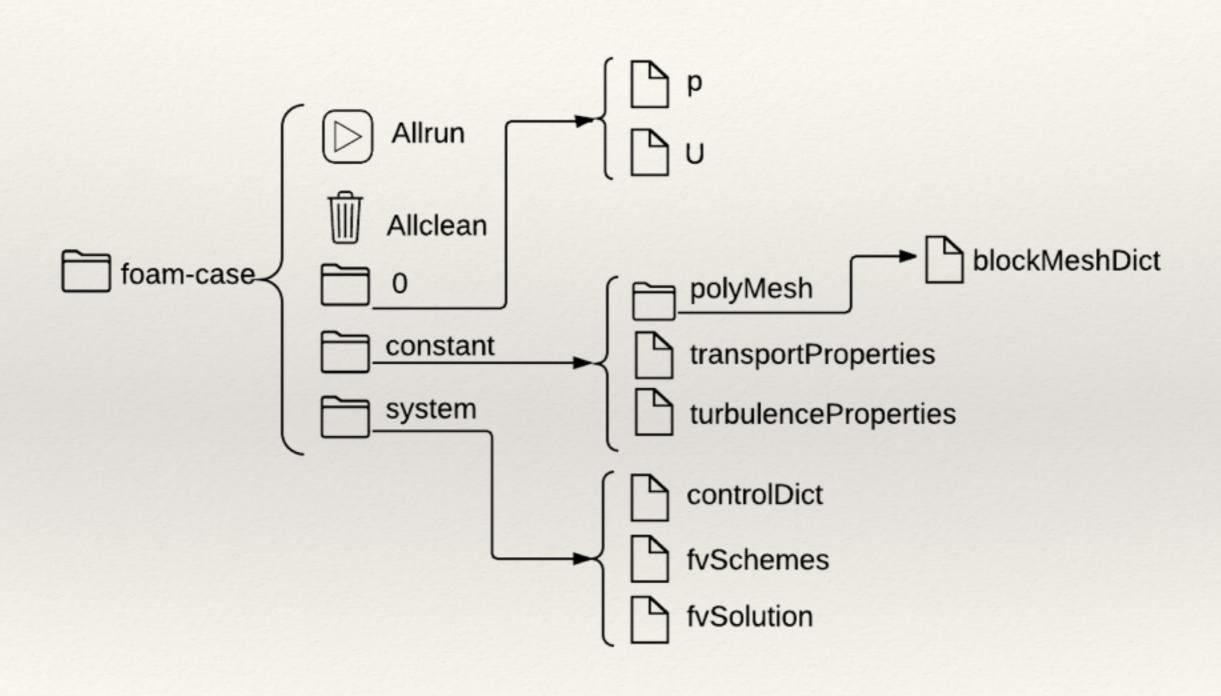
Tipos de convergência:

- * Convergência de malha.
- Convergência da solução numérica.

Sobre simulações transientes:

- * É necessário garantir a convergência em cada passo de tempo.
- * Não será observada a queda do resíduo inicial ao longo da simulação.
- Deve-se acompanhar o valor de uma dada propriedade.

Convergência, erros e incertezas

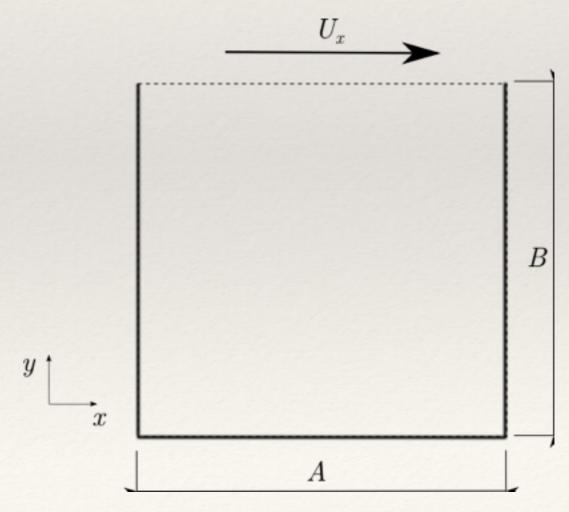

Problemas de convergência?

- * Reduza os valores adotados no critério de convergência.
- Aumente o número de iterações.
- Utilize soluções simplificadas como condição inicial.
- * Reduza o número de Courant.
- * O fator de relaxação pode ser utilizado para estabilizar a solução em algoritmos do tipo *pressured-based*. Se a solução apresentar instabilidades, reduza os fatores de relaxação.
- * Quer acelerar a convergência? Aumente o fator relaxação ou o Courant gradualmente.
- * Instabilidades numéricas podem ocorrer por problemas na:
 - * condição de contorno.
 - malhas de baixa qualidade.
 - * configurações inapropriadas na solução.

Estrutura do OpenFOAM

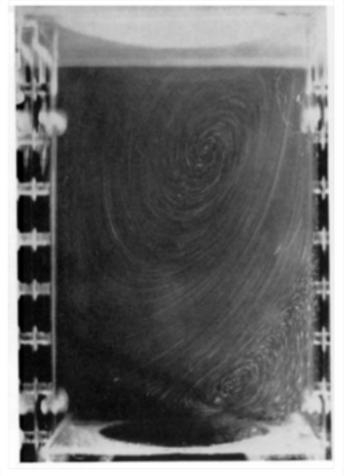
- * Diretório de instalação:
 - * applications: código fonte dos solvers e utilitários.
 - * bin: shell-scripts.
 - doc: manuais
 - * etc: arquivos de configuração para compilação.
 - * platforms: binários compilados
 - * **src**: código fonte básico (classes e templates das operações de campo, modelos de transporte).
 - * tutorials: casos pré-configurados para cada solver.
 - * wmake: scripts de compilação.

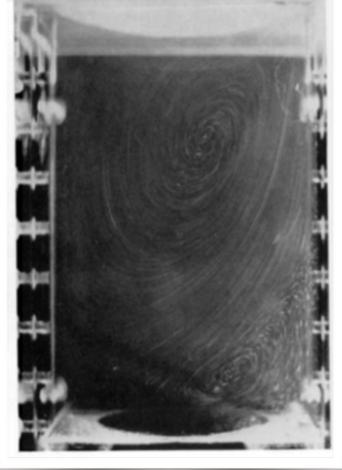
Estrutura do OpenFOAM

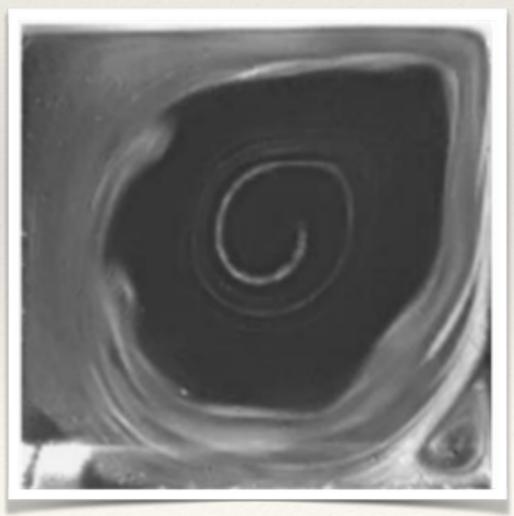


Definição do problema:

* Escoamento de um fluido Newtoniano, isotérmico, incompressível em uma cavidade, onde a fronteira superior desloca-se com velocidade conhecida e as demais fronteiras são estacionárias.


Número de Reynolds


$$Re = \frac{U_x A}{\nu}$$



Definição do problema:

Gera linhas de corrente fechadas onde a natureza do vórtice depende da razão de aspecto (razão da altura pela largura) da cavidade e do número de Reynolds.

Re = 1.070

Re = 4.030

Modelagem matemática:

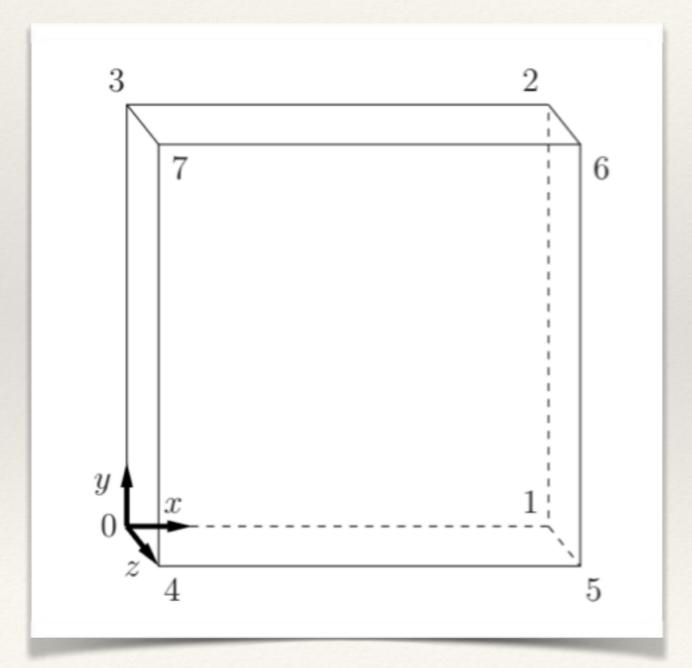
Conservação de Quantidade de Movimento:

$$\frac{\partial \mathbf{U}}{\partial t} + \mathbf{U} \cdot \nabla \mathbf{U} - \nu \nabla^2 \mathbf{U} = -\frac{1}{\rho} \nabla p$$

Equação da Pressão:

$$\frac{1}{\rho}\nabla^2 p = -\nabla \cdot [\mathbf{U} \cdot \nabla \mathbf{U}]$$

Algoritmos de acoplamento pressão-velocidade: PISO, PIMPLE ou SIMPLE


Solvers do OpenFOAM:

- * **pisoFoam**: Escoamento incompressible, transiente (PISO), laminar ou turbulento, fluido Newtoniano ou na o-Newtoniano.
- * **pimpleFoam**: Escoamento incompressible, estaciona rio (PIMPLE), laminar ou tur-bulento, fluido Newtoniano ou na o-Newtoniano.
- * **simpleFoam**: Escoamento incompressible, estaciona'rio (SIMPLE), laminar ou tur- bulento, fluido Newtoniano ou na o-Newtoniano.
- * **icoFoam**: Escoamento incompressible, transiente, laminar e fluido Newtoniano.

Solvers do OpenFOAM:

- pisoFoam: Escoamento incompressible, transiente (PISO), laminar ou turbulento, fluido Newtoniano ou na o-Newtoniano.
- * **pimpleFoam**: Escoamento incompressible, estaciona rio (PIMPLE), laminar ou tur-bulento, fluido Newtoniano ou na o-Newtoniano.
- * **simpleFoam**: Escoamento incompressible, estaciona'rio (SIMPLE), laminar ou tur- bulento, fluido Newtoniano ou na o-Newtoniano.
- * icoFoam: Escoamento incompressible, transiente, laminar e fluido Newtoniano.

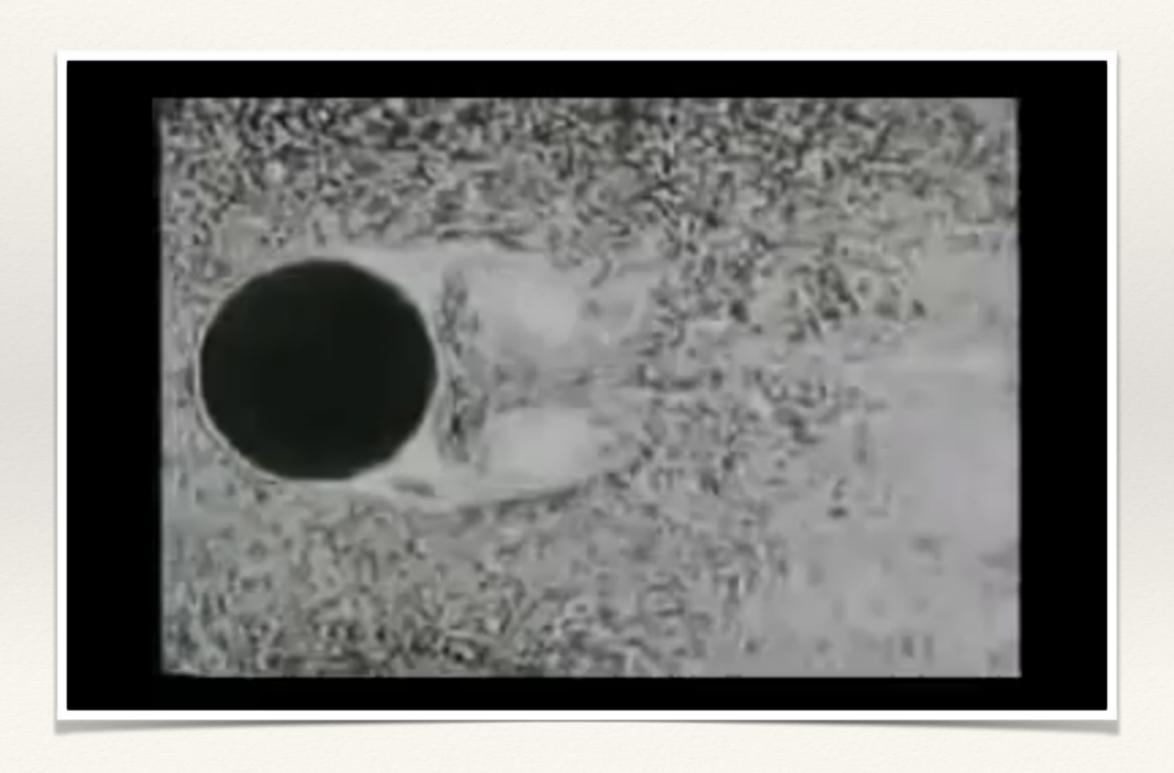
Geometria: A=B=0,1m

Courant

$$Co = \frac{\delta t |\mathbf{U}|}{\delta x}$$

$$\delta x = \frac{d}{n} = \frac{0.1}{20} = 0.005 \text{ m}$$

$$\delta t = \frac{Co \ \delta x}{|\mathbf{U}|} = \frac{1 \times 0.005}{1} = 0.005 \ \mathrm{s}$$


transportProperties:

Dimensões no OpenFOAM:

No.	Property	SI unit	USCS unit
1	Mass	kilogram (kg)	pound-mass (lbm)
2	Length	metre (m)	foot (ft)
3	Time	———— second (s) ————	
4	Temperature	Kelvin (K)	degree Rankine (°R)
5	Quantity	———— mole (mol) ————	
6	Current	———— ampere (A) ————	
7	Luminous intensity	candela (cd) $$	

KEEP CALM **AND** KEEP **FOAMing**

Escoamento em torno de um cilindro

KEEP **FOAMing AND** SHARE

Referências

- * The OpenFOAM Technology Primer, T. Maric, J. Hopken, K. Mooney, sourceflux, 2014.
- User Guide, OpenFOAM.
- * An Introduction to Computational Fluid Dynamics: The Finite Volume Method, H. Versteeg, W. Malalasekera, 2nd Edition, 2007.
- * Wolf Dynamics, OpenFOAM Tutorials: www.wolfdynamics.com/ tutorials/openfoam_tutorials/overview.html